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CHAPTER I

INTRODUCTION

In recent years there has been increasing interest in the appli-
cation of Liapunov's direct method to the design of practical control

systems.l’2

The technique involves the definition of a non-linear con-
troller which will cause the plant to track a phase-variable model in
some region of the state space. The effect of transducer noise on the
design technique has been examined by Taylor3 and Jorgensonf and their
work represents a significant advance in the practical application of
the design technique.

The technique is of particular interest when applied to systems
which exhibit unstable open-loop response, since a region in the state
space can be defined, within which stability can be assured. Such prob-
lems are commonplace in the chemical industry. The attitude control of

3

A
a flexible missle also falls within this category, and in fact, it was
A

the examination of the flexible missle problem which initiated the work
—
on this thesis.

Most of the theory developed requires that the plant output be the
lowest order phase variable of the plant. 1In theory, there is no reason
why a plant, whose output is formed by a linear combination of the lowest
order phase-variable and other plant states, camnot be transformed to the
required canonic form by an appropriate transformation. This transfor-

36,7 for linear systems,

mation has been investigated by various authors
and has been shown to exist when the conditions for controllability are

satisfied.




The problem investigated in this thesis is the control of an un-
stable linear system whose output is directly related to the lowest
order phase variable of the system. A bounded disturbance vector is
included in the system equations.

In Chapter II the basic synthesis technique is developed. The
approach is to first define a transformation to the required canonic
form. A semi-definite Liapunov function is defined as suggested by
Taylor? and the synthesis procedure then follows the basic lines out-
lined by Lindorff% The results of Taylor's work on transducer noise3
is included along with the effect of a disturbance vector.

In Chapter III, the practical problems occuring in the applica-
tion of the technique are investigated. The region in the state space
in which the controller can insure stability is examined closely. It
is noted that validity of the control law within a region is not suf-
ficient to insure stability in that region. Another region is defined
within which the control law is valid and system motion is constrained
to lie within the region. Conservative estimates of these regions are
noted as being useful in the actual design of the system.

The problem of selecting an appropriate switching line is examined
in some detail, and it is noted that the semi-definite Liapunov function
resulted in a much more practical constraint on the coefficients of the
switching function than that developed by Monopoli% Chapter I is con-
cluded with an example illustrating the application of the design
technique.

An interesting special case of the material of Chapters II and
III is treated in Chapter IV. The problem comes about with the

elimination of the model.




In Chapter V the synthesis technique is applied to a complex sixth
order system. The system consists of a two-segment inverted pendulum,
hinged in the center by a spring representing elagstic stiffness, mounted
on a frictionless cart. Control is exercised through a force acting
horizontally on the cart. Changes in cart position are commanded by
a referénce input to the model. The results of simulation studies of

the system are included in this chapter.



CHAPTER II

FORMULATION OF THE SYNTHESIS TECHNIQUE

Introduction

The problem originally investigated by the author was the control
of an inverted pendulum mounted on a frictionless cart. An attempt to
apply the synthesis technique as outlined by Lindorff2 was unsuccessful
for three reasons: 1) The plant output (cart position) was not the
lowest order phase variable of the system as required. 2) The selec-
tion of the switching line by the techniques of Monopoli1 was judged
to be too cumbersome to be of practical use in the design of higher
order systems. 3) The effect of disturbances was not treated in suf-
ficient detail to aid in the design of the system.

The first limitation was eliminated by simply transforming the
equations to the required form. It should be noted that the plant out-
put must be defined such that the linear combination of states forming
the output includes the lowest order phase-variable. This requirement
is necessary to insure that the reference input corresponds to a stable
equilibrium point.

The cumbersome equation of Monopoli1 used for the selection of
the switching line was avoided when the semi-definite Liapunov function
suggested by Taylor was employed.

The effect of disturbances in the system was included in a man-

. 3
ner similar to Taylor's treatment of transducer noise.




Statement of the Problem

The system is assumed to be described by an equation of the

form

y= Ay + fu + g(y,2,t), ‘ (2.1)
where

Yy - n dimensional state vector

u - controlled force

N
1

q dimensional disturbance vector (q < n)

A - n x n constant matrix

f - nx 1 constant vector

g - n dimensional disturbance function

The system described by equation 2.1 is assumed to be classically
unstable but controllable. The disturbance g(y,z,t) and the controlled
force u are bounded.

The objective is to define a controller which will guarantee
stability within some region of the state space in the presence of the
disturbance vector, g(y,z,t), and to provide an input which will allow
the system to be commanded to move in some prescribed manner within
this region.

The approach (refer to Figure 2.1) to be taken will be to first
define a transformation on the system equations to convert them to a
canonic form. A phase variable model with a reference input will be
chosen, such that the plant will be able to track the model in some
region of the state space. The controller and limits on certain of
the model states will be defined by first choosing a Liapunov function,

v, which is positive-semidefinite in the error space defined by the
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difference between the transformed plant states and the model states.

A relay controller will then be chosen such that 1) ¥ is negative semi-
definite in some region of the state space, where v = 0 only when

v =0, and 2) Motion near v = 0 is stable and bounded even in the
presence of an imperfection in the switching action of the relay, and

noise on certain of the plant states.

Transformation to Canonic Form

It is desired to find a transformation

Yy = Kx, (2.2)
which transforms equation 2.l to the canonic form

k= Ax + fou + h(x,z,t), (2.3)
where the forms of AO and go are

{o 1 0 .....0"]
0 0 1 .....0

Ay = | . (2.4)
0 0 0o . .1
"'al —82 —33.-----al

and
-
0
0
- 2.5

i . (2.5)

0




The existence of the matrix K is guaranteed if the system is con-
trollable. The computation of the matrix K is straight-forward and has

been examined by Rane5 and others.6’7

Formulation of the Model

The model is defined of the form shown in Figure 2.2 such that

the variables in the model space s are phase-variable, i.e.,

51 7 %2
Sy ¥ %3

. (2'6)
Sh-1 = 5n?

and the nature of én will be determined by the stability requirements
to be developed.

An error space may be defined as in Figure 2.1,

e=35-X. 2.7

In order that the plant be guaranteed to track the model, it must
be shown that the system is asymptotically stable in a region of the

error space.

The Liapunov Function

Consider the Liapunov function given by
v = ke Pe, (2.8)
where P is chosen to be positive semi-definite symmetric matrix of rank

one. The P matrix is then of the form
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— N
2
Pln P1nP2n ¢« v 4 e e Pln
P P
nn nn
2
PlnP2n P2n « « +« o« P
P P 2n
P = nn nn (2.9)
{fln P2n ¢« a e e s Pnn
and v can be expressed as
v = L (P, e. +P_e, + + P e )2 (2.10)
2P In"1 2n- 2  °°°° nn n’ ° '
nn
Defining
Y = Plnel + P2ne2 + ...+ Pnnen’ (2.11)
allows equation 2.10 to be written as
_ 1 2
v 2P Y ]
nn
which is positive semidefinite if
P> 0. (2.12)

nn

The time derivative of v can be expressed as

R (2.13)
nn

or

+ ... +P _é&). (2.14)

. 1 . .
V=P Y(Plnel + P2ne2 nn n
nn

From equation 2.7 it can be observed that

e-3-1 (2.15)
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Substituting for § and X gives

€ = ey -y
é, =e3-hy
) (2.16)
én—l =€ " hn—l
& =8 -u+a,x, +...+ax ~-h.
n n 171 n n n

Employing equation 2.16 and rearranging terms allows V to be written as

P
- _ - - _ - in
v =-y(u-38 a;x; ayXy eee A X + 7 h1 S
nn
+ n-1ln h +h - Pln e - _ Pn-ln e ) (2.17)
y P n-1 n P 2 *e P n’’
nn nn nn
The Control Law
It is desired to define a control law
u= f(e) (2.18)

such that: 1) ¥ < O when v # 0, and 2) Motion is stable near the sur-
face v = 0. It is hypothesized that the desired u is of the fomm

u = UOSGN(Y), (2.19)
where U0 is made large enough to control the sign of the expression in
parenthesis in equation 2.17. More precisely; a region R in ‘the state

space, within which ¥ < 0 when v # 0, is defined by

SGN(y) = SGN(UOSGN(y) -8 max = ayXy ...

272
P P
ln _2n
-anxn+P h1+P h2 00000..+
nn nn
P P P P
n-ln 1n 2n n-ln
P hn_1 + hn - e, €gece= o en). (2.20)

P P
nn nn nn nn
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The Non-ideal Controller

At this point it will be realized that in practical systems y can-

not be measured exactly, and the u actually implemented will be of the

form
u = UOSGN(Y'), (2.21)
where
' =
Y=y vy
=y+Pp N +...+P N, (2.22)

where N, represents the measurement noise on the variable x Further-

i i’
more, it will be assumed that there is also an imperfection in the relay
switching such that for

vl < 85 (2.23)
u is not uniquely defined. Thus the SGN function is implemented as shown
in Figure 2.3. Two possible forms of the imperfection are illustrated in
Figure 2.4.

The noise Ni on each measurement is assumed to be bounded, so that
there exists some maximum value for IYNI, which will be defined as GN’
thus

6 = MAX (| vy . (2.24)
GN can be visualized as an additional region for which the relay out-
put 1s not uniquely defined, such that the effective region for which
u is undefined is given by

Iv] < &, (2.25)

where

GT = 6R + 6N. | (2.26)




‘Y‘?
_GR
Figure 2.3 NON-IDEAL SIGN FUNCTION
u u
+U
4+ +U e I
- A
R .Yl .Y'
+48
R -GRV +6
[PR— --—U L
° -U
o

Figure 2.4 POSSIBLE IMPERFECTIONS
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Thus, the action of the non-ideal relay can be described by

u = +U0 Yy > GT
0 < |ul < [ug] Y] < &, (2.27)
u = -U, Y < g

Stability of the System

Stability of the system of equation 2.1 with the non-ideal con-
troller of equation 2.27 will be investigated in two steps. First, it
will be shown when |Y| < GT that state motion asymptotically approaches
the hyperplane y = 0, and secondly, within the hyperstrip |y| < GT that

state motion is stable and bounded.

Motion When |y| > GT

In the region within R for which |y| > §,_, the output of the non-

T,
ideal relay will be identical to the ideal u

u = UOSGN(y) (2.19)
and thus v < 0, and the state vector will approach the hyperplane y = 0

asymptotically.

Motion Within the Hyperstrip [Y[ < 6T

The technique of Taylor3 will be used to show that the motion
within the hyperstrip |y| < GT is bounded and stable. Motion in the

error space is given by equation 2.14

ey = by T
e3 = by
&= . (2.14)
en - hn-l
fn - u+ alx1 + ... + anxn - hE.
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Within the hyperstrip u is given by

0 < |uf < U, (2.28)
and v is known to be bounded,

y=8 (2.29)
where

0 < [B] < & (2.30)

Solving equation 2.29 for e, gives

e = El—(s -P, e, -P,e, - ... -

n 1n-1 2n-2 ) (2.31)
nn

Pn—lnen—l

Substituting this expression into equation 2.14 gives the reduced system.

— - —
0 1 0. ......0 —h1 T
0 0 1... .. 0 -h2
é'= L 4 L] . L] * » » L] L ] . . . . 9-' + L]
0 0 0 1 ’
P1n P2n P3n Pn—ln g <h 1
- - -P p_ -
| nn nn nn nn_| | nn _
= Ce' +a (2.32)

1f P , and Pnn are chosen such that the C matrix is a

Pln’PZn’ **®? "n-ln

stability matrix, the motion in the error space is stable. Furthermore,
since h and B are both bounded the input to this reduced system is
bounded, and so, the output is bounded.

Thus the ultimate bound of Taylor including a disturbance vector

is simply the boundary of the reachable set of the system described by

equations 2;31 and 2.32,
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The determination of the reachable set of a stable system with
bounded input is analogous to finding the recoverable set of an un-
stable system with a bounded input. This problem has been investigated
by Higdon8 and Lemay? The boundary could be readily found for the sys-
tem without a disturbance (i.e. h = 0). The determination of the bound
when h # 0 is theoretically possible, but the solution by existing
techniques becomes quite formidable. For this reason, the actual

technique of determining the reachable set will not be discussed in

detail.




CHAPTER TII

APPLICATION OF THE SYNTHESIS TECHNIQUE

Introduction

The application of the synthesis technique of Chapter II brings
up many questions, since some of the equations in Chapter II, al-
though theoretically meaningful, are of little direct use to the
designer.

The region of operation is discussed in considerable detail, and
a conservative approximation of this region is defined in the plant
state space to aid the designer in the evaluation of a particular de-
sign. Some of the aspects of choosing a model are discussed briefly.

The selection of the switching line is examined in some detail.
The expression defining the ultimate error bound including the effect
of a disturbance is developed. The effect of the switching line on
convergence time is also discussed, including a special case of chatter
motion on the switching line.

Much of the material of Chapters II and III is illustrated with
a second order example corresponding to the inverted pendulum con-
trolled by a torque source at the pivot in the presence of a wind

disturbance.

Controllable Zone

The region R in the state space for which the control law assures
¥ < 0 is given by equation 2.20. In this region the system can cause
the plant to track the model with a bounded error. However, it is pos-
sible for systeﬁ trajectories to leave R while obeying the control law,
and, of course, as soon as the plant state leaves R the stability of the

17
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system can no longer be guaranteed.

This result is to be expected when one considers the freedom pro-
vided in the design of the model, and it is recognized that the system
trajectories are determined by the model. 1In fact, the synthesis tech-
nique does not even require the model to be stable!

The controllable zone, R', will be defined as that region within
R, consisting of all points A and B for which it is possible for the
model to cause the system to move from A to B and from B to A without
leaving the region R.

The regions R and R', although theoretically meaningful, are
judged to be much too complex to be helpful in the actual design of
a practical system, since R and R' are a function of P, h, x, s, én,
and e.

Two much more meaningful regions would be the worst case regions
in X space corresponding to the regions R and R'. To define these re-
gions, a conservative subregion of R will be defined in x space with
necessary assumptions, and a conservative controllable zone will be
defined with respect to this region.

The region R is defined by equation 2.20

SGN(y) = SGN(UOSGN(Y) -8 - ax; - axX, - ...
P P P
in 2n n=-1n
ocax +5Bh o+Sp 4+ D=0+ (2.20)
nn nn nn
P
wn ooidn P n-ln
n P 2 P 3 co P .
nn nn nn

Equation 2.20 would certainly be satisfied if U, were chosen large

0
enough to control the sign of the terms on the right hand side,




19

P
. in
U0 > I-s T A% T ayX, - ... - ax, + P h1 + ...
nn
P P P
n-1ln in 2n
et 5 hn-l + hn P % " F ©3 (3.1)
nn nn nn
_ Pa-1n e
LI ) P nl.
nn

Since the elements of h are bounded, the worst case for the terms

involving h in equation 3.1 is simply the maximum value of these terms,

H,
Pln P2n Pn--ln
H=MAX(-I;——h1+P——-h2+...+—P—-hn_1+hn). (3.2)
nn nn nn

It will be assumed that the model is implemented in such a way that a

magnitude constraint is imposed on én,

lén| <M. (3.3)

In order that the terms in e in equation 3.1 be bounded, it is
necessary to require that the error motion be within Taylor's bound,
and that the system motion remain within R. This assumption is not
overly restrictive since the error could be initially set within the

error bound. The worst case of the termms involving e is then given by

P P P
= MAX In 2n _ __n-lne |). (3.4)
E"‘ (-P ez_P e3 es e P n
nn nn nn

Rw, the conservative region in x space, corresponding to R, can

now be defined as that region satisfying

-M-E-H> |-a X) = 8y%y = ..o~ AKX |, (3.5)

Yo 1



20

where it is assumed that the error motion is within the error bound
of Taylor.

The worst case controllable zone, R&, with respect to Rw will be
defined as that region within Rw, consisting of all points A and B for
which it is possible for the model to cause the plant to move from A
to B and from B to A without leaving Rw'

The region Rw, although conservative, gives the designer some
feeling for the region in which the control law will cause the system
to exhibit stable motion.

Summarizing briefly, the region R is that region within which the
plant can track the model with a bounded error. Outside R the plant
cannot track the model with a bounded error. However, brief excursions
outside R can occur for which the system will remain stable. It was
noted that there were points in R for which it was impossible for the
system to force the state trajectory to remain within R, and thus a
second region R' was defined as that region contained in R, within which
the system trajectories could be forced to remain within R. The re-
gions R and R' were judged to be of limited use in an actual design,
and two new regions RW and R& were defined in x space representing a
conservative estimate of R and R'. The derivation of Rw and R& required

the assumption that the system error was always within the error bound.

Selection of the Model

The selection of the model surely represents one of the most im-
portant decisions facing the designer, since both the system response
and the region of operation is determined largely by the model. A dis-

cussion of what form of model is best will be avoided in this paper,
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however, it is instructive to determine that model which maximizes R&
with respect to a given region RW in an ideal system. An ideal sys-

tem will be defined as a system which has an error bound of essentially

zero size.

Consider the model represented by the system

S; = 8,
52 7 °3
) (3.6)
®n-1 - °n
s, =M
where n represents a bounded input
in| <M. (3.7)

For a particular system, M could be determined by equation 3.5 and
could possibly be a function of U0 and x. However, throughout this
Chapter it will be assumed that the designer has fixed M at some con-
stant value consistent with his specifications.

The controller for the model is completely in the hands of the
designer. Suppose the controller was optimal with respect to some cost
function J,

t
J = [ f(s,t)dt (3.8)
%o
and that a state space constraint was imposed, such that x must remain
within R, where in this ideal case of zero error, s = x. The con-

straint is such that infinite cost would be associated with motion out-

side R. Pontryagin's maximum principle then determines a n(t) which
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ninimizes J. Certainly this model results in the largest R; for the
given Rw, since if this were not true there would have to exist two
points N and Sp for which the cost J was not minimized.

In most systems it would not be practical, and maybe not even
desirable, to construct a model of the form above. Even so, the exis-
tence of this model could serve as a guideline in the design of a
more practical model.

Another important aspect of the model is its input. For a given
model there is a set of inputs, representing the permissable set, which
will not cause system motion to leave R.

In a practical application it may be desirable to choose a model
where the input is bounded. If the bound on the input were chosen such
that the motion of the model within its reachable set could not cause
X to leave Rw’ then stability could be guaranteed for all inputs and
all permissable disturbances. A possible form for such a model is
illustrated in Figure 3.1.

Although a detailed discussion of the many considerations to be
weighed in the designing of a model is not the purpose of this section,
a few points deserve mentioning. In most systems, it would be assumed
that initially the initial conditions of the model would be chosen such

that the error e at time t, would be within Taylor's bound, so that,

0
the system error would remain within this bound provided the system
state remained within R. Thus it is implied that plant transients

due to steps are determined totally by the model. Furthermore, the

model could be designed to give specific system trajectories that may

be difficult to obtain by conventional techniques.
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The problem of designing a model to system specifications poses
another problem in so far as the model states do not correspond with
the measured variables of the system. The existence of this problem
suggests that it might be advantageous to treat a model whose form is
similar to the plant. The basic form of this control configuration is
shown in Figure 3.2. The vectors having the same basis as the original
plant variables are denoted by a tilde. Vectors not so designated have

a basis corresponding to the canonic space. For this model

3 = (K)s, (3.9)

&= (R)e, (3.10)
and

=~ T

P = P (K) (3.11)

Selection of the Switching Line

In addition to the designing of the model the designer must also
choose a switching line
y = 0. (3.12)

For convenience a vector P is defined as

1|
P2n
P=. (3.13)
| nnj,
and thus,
y = Plx. (3.14)

When selecting y, the designer need only satisfy the requirements

that the matrix, C, in equation 2.32 be a stability matrix,
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- o ) 0 0 -
0] 0 1 0
C = . . 3 . . . 3 3 . . . . . . . . . (3.15)
0 0 0
_ Pln _ P2n _ P3n . .. Pn—ln
P P P P
nn nn nn nn

and that Pnn be chosgsen such that

Pnn > 0. (3.16)

The constraint that these requirements place on P can be readily ascer-
tained by the application of the Routh-Hurwitz technique to the charac-
teristic equation of the matrix C, ¢C(A)

9o(N) = Pnnxn'l + Pn-ln*n_z + oo + P+ P (3.17)

The switching line affects three aspects of the systems response:
1) The region of operation
2) The error convergence
3) The ultimate error bound.
The effect of P on each of these aspects will be discussed in the fol-

lowing paragraphs.

The Effect of P on the Region of Operation

For the purposes of this section it will be assumed that the re-
gion of operation 1s represented by R&. The region R& varles directly
with the region R, so for the purposes of a qualitative discussion of
how P affects R&, it will be sufficient to discuss how P affects Rw.

The region, Rw, is.defined by equation 3.5,

-a X (3.5)

Ug~M-E-H> [-ax - ...-ax
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where it is assumed that the error is within the ultimate error bound.

The only terms involving P are the terms E and H, where

Pln Po-1n
E—MAX(—F—-eZ-...-—I';—en) (3.4)
mm nn
and
Pln P2n Pn—ln
H=MAX(-P;—'h1+rh2+...+T—-hn_1+hn). (3.2)
nn nn n

Thus, the switching line will determine the value of the quantity
(E + H), and the size of the region R.W can be adjusted to some extent
by the designer. 1In fact the region Rw could be maximized with respect
to P by choosing P within its constraints to minimize the quantity
(E + H). Jorgenson4 used this approach to some extent in his work on

the design of a physical system with noise.

The Effect of P on Error Convergence

In most systems, the error e will probably be initially set
within the error bound of Taylor, and thus the error will be con-
strained to remain within this bound, assuming motion is never outside
R. The problem of error convergence could arise, however, in systems
where it is difficult or impossible to initially set the error within
the error bound, or after a system has experienced a bounded excursion
outside the region R. Although exact analysis of the error motion is
not conceivable since the motion is a function of h, x, s, én, and e,
some special aspects of the motion may be treated. It will be assumed

throughout this section that the system is operating within R.
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For the sake of discussion the error trajectory can be treated as
consisting of two parts. The first part is the section of the trajec-
tory outside the strip lyl f_GT, where the controller forces the error
motion to approach the line vy = 0 at all times by the application of a
constant force (either +UO or —UO). The second part consists of the
motion, once the strip has been reached, where the controller forces
the system to remain within the strip. The motion outside the strip
is the most difficult to analyze, and little can be said other than
the motion approaches y = 0 asymptotically. The motion within the
strip is somewhat more tractable and the rest of this section will be
devoted to the analysis of the motion within the strip.

The motion within the strip was treated previously, and the

equation describing the motion was found to be

. —~ T - T —_ -
e1 0 1 0 ceeeeneees O e h1
&, 0 0 ) P ¢ e, —h2
L] - L ] L] . L] - a - L] L] - . L] . * 0 L] + .
. 0 .0 0 . .
. In P2n 3n Pn—ln B - h 1
& _1 - - - ) n-1 CR n-
=2 — nn nn nn nn - -~ —nn
= C_e_' + 2, ) (2. 32)
and
S
e, =35 (B-P e -Pye, - ... -P ,e ). (2.33)

nn
The homogeneous response of this system is dependent only on P, while
a 1s a function of P__, B and h.
o nn a
It is helpful at this point to present the analysis of a special

case of the motion within the strip.
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Special Case — The Ideal System

In an ideal system with no noise or disturbances, and GT = 0, the
lyl j_GT reduces to a line. This special case is simply a limiting case
of equation 2.32 with h ~ 0 and 6T + 0, thus the error motion along the

line vy = 0 for the ideal system is given by

0 1 0 0 0....... 0
0 0 1 0 0 ¢ e v oo 1
&' e A (3.18)
0 0 0 .« e e e 0 1
_ Pln _ Pn—2n _ Pn—-ln
T e e e P P
nn nn nn

and is determined completely by the P vector.

The Effect of P on the Ultimate Error Bound

As shown in section II, the ultimate error bound is simply the
reachable set of the system described by equation 2.32.

&' =Ce' + a, (2.32)
and thus, the bound is a function of P, h and ST.

It should be noted that choosing P to minimize the effective im-
perfection in the relay due to noise, GN’ will not necessarily result
in the smallest error bound, since the bound is a function of both P

and §

Spe It does follow that reducing 6R will reduce the error bound.

Illustrative Example

At this point it is instructive to provide a simple example to
illustrate the synthesis technique. A second order example is chosen
so that the various regions can be readily displayed. The example is

also directly related to the system to be studied in Chapter V.
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Th P Ty 1.
i0e eXamyle c

ering to Figure 3.3 consists of an inverted
pendulum controlled by a torque source u' acting at the pivot. The dis-
turbance, corresponding to wind, acts on the mass m in a horizontal
direction. The mass m is assumed to appear as a point mass on the end
of a massless rod of length l. The equation of motion of this system

is

w _ & _u' __ cos¢ .
$ - 3 sing 3 - d'. (3.19)

1 (3.20)
1 3.21)

u = 2)u , (3.
ml

d = l—d'. (3.22)
ml

gives the linearized equation of motion as
$ - 2% = u- a (3.23)
Defining new variables X = ¢ and X, = $ enables the equation of

motion to be expressed in matrix form as

1w
"
]
+
[~
+

X (3.24)

Since this equation is already in canonic (phase-variable) form no

transformation is required.

The control law for this system is

= .2
u = UySGN(P, ,x; + P,,x,). (3.25)
The region R in which ¥ < 0 is given by 2.18
P
2 12
= - § - - . 3.26
SGN (v) SGN (U,SGN (v) 5.+ 2% +d -3 e,) ( )

22
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Figure 3.3 SECOND ORDER EXAMPLE
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The motion within the strip |y| < 8, 1s given by

P
g =-ghe tom+d (3.27)
22 22
and
P
e, = - ﬁlg e, + Fﬁ— . (3.28)
22 22
The reachable set of equation 3.27 is as derived by Higdon8 is
simply
1 Pa2
e, < ()6, + ()d (3.29)
1 P12 T P12 max
where
d oo = MAX (]d]) (3.30)
and therefore
ZGT
e, < + d . (3.31)
2 P22 max

Equations 3.29 and 3.31 describe the ultimate error bound.
P

The maximum value of Flz'ez, E, can be determined from equation
22
3.31 as
2P P
E=grsé, +5od . (3.32)
22 22 W&

Noting that H = d s the region R_1is defined by
max W

2P P, ,+P
1 12 12 " 22

The model chosen 1s of the form suggested previously, illustrated
in Figure 3.1. The bound on the input reference was chosen such that
the motion of the model within its reachable set always caused the

plant to remain within Rw'
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The region on controllability as discussed by Higdon is given by

2
V=, + >\x2| < Uye (3.34)

This region, which will be called R*, represents that region in x space
outside of which no control law can force the system motion to be
bounded.

For the purpose of illustration the following values were assumed

for the example,

MODEL: a1 =1
a2 = 2
5 =0.3
n
PLANT: A2 = 8.55
Uy = 1
CONTROLLER:
5, = 0.05
5 = 0
d = 0.05
max
P, =1
Py, = 1

The regions R , R'
w’ Tw

, and R* for this system are shown in
Figure 3.4. The system was simulated on an analog computer and it
was found that no disturbance less than dmax’ and no input into the

model could cause instability of the system. Error convergence was

also investigated and a typical trajectory is shown in Figure 3.5.
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Figure 3.5 SECOND ORDER EXAMPLE - ERROR RESPONSE




CHAPTER IV

THE REGULATOR PROBLEM

Introduction

One interesting simplification of the synthesis technique occurs
when the model is eliminated. It was the investigation of this problem
that led to many of the more general results in this thesis. For this
problem, the region R becomes a function only of P, x and h, thus the
definition of Rw requires no assumptions about the system motion being

within the error bound.

Statement of the Problem

The system is assumed to be the same as that considered in

Chapter II as described by equation 2.1,

¥y =4y + fu + g(y,2,t). (2.1)

The objective is to define a controller which will guarantee
stability in some region of the state space, while returning the system
to the vicinity of y = 0.

The approach to be taken is the same as in Chapter II, and the
equations developed in Chapters II and III can be applied directly to

this system by noting that with the model eliminated

8=0, (4.1)

s =0, (4.2)
and

e = -x. (4.3)

36
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Application of the Synthesis Technique

Thus the ideal controller is given by

u = UySGN(-P; x; - P x, = oo = P x ) (4.4)

and the region R in which this control law assures v < 0 is defined by

P

SGN(y) = SGN(UOSGN(Y) - ax, + CFLE - a2)x2 +
nn
P P
2n n-1n
+ (P - a3)x3 + ..o+ P - an)xn
nn nn
P P P '
In 2n n-1ln
t3 byt bt +5 h _;+h) (4.5)
nn nn nn

The region R.W can be defined by substituting the maximum value of the

terms involving h, thus Rw is defined by

Pln P2n n~1ln

(UyH) > |-a1x1 G - ax, + G- agx b A -a x|
nn nn nn

(4.6)

The requirement on P for bounded stable motion within the strip
|Y| < GT is the same as in Chapter II, that is, the matrix C must be a

stability matrix, since motion within the strip is defined by

il = &—{-l_ 9.. (4.7)
and
P P P
X = - _PTI'BXI - ?2"9; XZ T eee T g ln xn - PB . (4. 8)
n nn nn nn nn

The ultimate bound on the motion in x as t approaches infinity is

given by the reachable set of equation 4.7.

1t is instructive at this point to consider the second order

'example of Chapter III.
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Second Order Example

The control law for the second order example of the previous

Chapter becomes

u = UOSGN(_PIZXI - P22x2), (4.9)
and the region R.W for this controller is defined by
P
2 12
Uy - B) 2 %) + 57 x,]. (4.10)

22
The region R.w and the region R& which was determined experimentally

for this system are illustrated along with the region R* in Figure 4.1,
where the system parameters are those of the previous Chapter, except
that P12 = 6.5 and P22 = 1.0,

The actual region from which the system could be returned to origin
was found experimentally and this region is illustrated in Figure 4.2.

An interesting special case is when the switching line is parallel
to the boundary of R¥, i.e., when P12 = A and P22 = 1. For this case
the region RW is maximized and corresponds exactly to the region R&.
Furthermore, the actual region for which stability could be assured as
determined experimentally is also identical to Rw' The regions R.w and
R* for this system are illustrated in Figure 4.3.

It should be noted that it is not usually practical to choose P

such that R, is maximized, since the P also determines the nature of

the motion along the switching line.

The Ideal Regulator Problem

The investigation of the i1deal regulator problem leads to some

significant conclusions about the chatter motion near y = 0. 1In fact,




39

INV'Id ASVHd -

WAT904d ¥0IVINOHY

1'% °an31ig




40

14S FTIVIIA00TE TVAIOV - WIT1908d ¥OIVINIH z'% @and14

xd

4 0°1-

4 §'0-

£°0-

-
-

c'0

199 91qBISA0D9Y TBNIOY

£ 23
-t

€0

e




41

n
¥ WOWIXVR - WETdOdd d0IVINOTd €°% 2an314




42

application of the synthesis technique readily yields the section of a
switching line about which chatter motion can exist.

The ideal problem to be discussed is given by letting

h=0 (4.11)
and

GT =0 (4.12)

in the system of equation 2.1. In this case, it is possible to treat
the region R, defined by

P
= _in
SGN(y) = SGN(UOSGN(y) - ax; + (Pnn + a2)x2 I

+ (EB:lE + a)x ) (4.13)
P n’ " n’’ '

nn

directly, since it is a function of x alone.

Within R the control law will force the system to move toward the
switching line y = 0 when vy # 0. Thus, the conditions for chatter mo-
tion, as outlined by Higdon, are satisfied on those parts of the
switching line which lie in the interior of the region R, therefore,
it can be concluded that the system will exhibit chatter about the seg-

ment of the line vy = 0 which lies inside R.




CHAPTER V

A SIXTH ORDER EXAMPLE

Introduction

The problem originally undertaken by the author was that of
balancing an upright flexible beam mounted on a frictionless cart
by the application of a control force acting horizontally on the
cart, Figure 5.1. This problem is of some significance since it is
analogous to{the problem encountered in the attitude control of a
flexible misgle during lift-off. 1In as much as problems encountered
in the appl;;ation of the Liapunov synthesis technique to this sys-
tem provided the incentive for the theoretical investigations con-
tained in this thesis, it is only fitting therefore to treat this
problem in the conclusion of this work.

The approach usually taken in problems of this type is to dis-
cretize the beam into N segments. The equal-length segments are
connected in a chain-like fashion, with the connection of the seg-
ments consisting of a spring hinge representing the elastic stiffness
of the beam at that particular station, Figure 5.2, The linearized
equations of motion of such a beam mounted on a frictionless cart
have been derived by Schaefer for an arbitrary number of segments.
Theoretically any desired accuracy can be achieved by choosing N suf-
ficiently large.

It is assumed that it is only desired to actively control cart
position and the first bending mode. The technique used by Schaefer10
to reduce the 2N + 2 order system, resulting from the equations of

motion, to the desired sixth order system is to transform the system

43
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equations to Jordan normal form, and discard the variables repre-
senting the higher order bending modes. This approach is desirable
when one wants to accurately represent a specific mechanical model.
However, for the purpose of this example, which is to demonstrate the
application of the synthesis technique to a particular class of prob-
lems and not to represent an accurate description of any specific
mechanical model, it is sufficient to treat the discrete two-segment
beam problem, Figure 5.3. The solution to this problem is analogous
to the continuous beam problem. The effect of disturbance and noise
are not considered in this example, since the evaluation of the error
bound requires the investigation of the reachable set of a fifth-order
system with a complex input function. The existing techniques of

Higdon8 and Lemay9 cannot handle this problem realistically.

Equations of Motion

The two pendulum segments, each of length h, are assumed to be
connected by a spring hinge of stiffness EI. The two point masses
corresponding to each segment have equal mass m, and the angles of
the segments with respect to the vertical are designated as ¢1 and
¢2 as indicated in Figure 5.3. The cart is of mass My, and the total

mass of the system 1s referred to as MT’

MT =m, 4+ 2m, (5.1)

The control force, u, is assumed to act horizontally on the cart.
The linearized equations of motion for this system as derived

by Schaefer are given by
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Figure 5.3 SIXTH ORDER EXAMPLE
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- - — —_ - —
T, 0 0 0 [
hm hm
2 2h  hi¢p + |0 (2u2-2g) -2u2 $ =0 {u, (5.2)
1  h  h 0 -2, (2u2-g>_l L0l
where o
%0
¢
2
|
and
2 ET
u =m (5-4)

The basic assumption made in the linearization of the system
equations is that the angles ¢1 and ¢2 are sufficiently small such that
the acceleration forces due to bi and $é can be treated as acting
horizontally.

Multiplying through by the inverse of the coefficient matrix of

i_gives the equations in the somewhat more convenient form

- - 1
0 _Kl _KZ mg
=10 Ky K,le 4+ 1 u (5.5
hmy,
0 -Kg K | o
b p—
where
2
R, = -(%%ﬁ&h—) (5.6)
0
EI
Ky = 77 (5.7




and

2EI—2mgh2

EI-2mgh
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Ky= O3 )+ Gy

tal
1

el
[

_ 3EI-2ngh?
\ ham s 3

2
I-2ugh
6 (BEh im )

Defining a new vector y as

1]

2
. _(2EI-mgh ET
4 o h3MO)

0

0]

2
)

(5.7)

(5.9

(5.10)

(5.11)

(5.12)

u. (5.13)
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Tranformation to Canonic (Phase-Variable) Fomm

It is desired to define a transformation

y = Kz

which transforms equation 5.13 to the canonic form

0 1 0 0 0 0] To]
0 0 1 0 0 0 0
0 0 0 1 0 0 0
X = x+
0 0 0 0 1 0 0
0 0 V] 0 0 1 0
:al -a, -a; -a, -ag —aé_ _1 i

(5.14)

(5.15)

The transformation matrix as computed by the equations of Rane

is
K.g a 1 T
R - S L 0
bm bm,, o
K.g
L
0 0 0
o o %5 o __1 0
K = bm, hm,
K
5 1
0 0 0 —2 0 -
hm,, hm,
0 0 K o 0 0
hm,
0 0 o %5 0 0
_ g |
where

(5.16)

(5.17)
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Its inverse K_1 is given by

TBmO h2m0 h2m0 ]
f(_g_ 0 K.g 0 —(E?(K5+a)) 0 ‘
5 5 2 5 2 i
hm0 h m0 h mO |
° % ° & O ~(g7 (Rg-0)) §
bm,y
0 0 0 0 - 0
Ks
Kl - hm,, (5.18)
0 4] 0 0 0 E——
5
0 0 -hmo 0 hmO 0
LO 0 -hmo 0 hmO .

a; =a, =a, =a,-= 0, (5.19)
ay = —KS(K3 + K4) (5.20)
ag = (K3 - KS) (5.21)

The application of the synthesis technique for this ideal system
with no disturbances or noise, simply involves the selection of a model
to give a "desired" response, and the determination of a switching line
that will satisfy the conditions for stability.

The region R in which v < O for this system is given by

SGN(y) = SGN(UOSGN(Y) - é6 - a.x, - aXx, +

33 575
P P P P P
+ P16 e, + P26 eq +‘§§é e, +'§&é e + 322 e6). (5.22)
66 66 66 66 66

The switching function SGN(y) was implemented with GR essentially zero,

thus the error bound was sufficiently small such that the error terms
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could be neglected in the definition of Rw' With this assumption the

region R.w is given by

- M - -
Y% > |-agxy - agxg

. (5.23)

In terms of the original variables the region Rw is given by

Ug - M > [(K3 - K)é, + (K, + K5)¢2|. (5.24)

The evaluation of the controllable zone could not be carried out due

to the complexity of the system. Equation 5.24 indicates however that
the zone is determined mainly in temms of the permissable angles ¢1 and
¢y

Selection of the Model

Since it was not the purpose of this example to meet any specific
performance requirements the model was chosen with simple linear feed-
back into a saturation function. The feedback coefficients were chosen

by selecting a transfer function in the linear region as

51 1

s, (et)F . (5.25)
REF

The form of the model is illustrated in Figure 5.4.
Selection of the Switching Line

In the ideal system, the only necessary requirement on the
switching vy = 0, where

Y = P16x1 + P26x2 + P36x3 + P46x4 + P56x5 + P66x6’ (5.26
is that the equation

5 4 3 2 - 5.2
Peed * Pggh t BT +PiAT + P, Plg=0 (5.27)
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be Hurwitz. This requirement can be readily achieved by simply choosing
the coefficients in vy to be the coefficients of an equation known to be
stable. An equation of the form

(s +a)° =0 (5.28)

was chosen for this example.

Simulation Results

The sixth-order system was simulated on an analog computer, with

parameters chosen as

EI = 25 lb/ft2
m = 0.05 slugs
m =

S 0.10 slugs
h =2 ft

2

g = 32.2 ft/sec
u = 0,01 1b
M = 0.003

The linear response of the model was chosen to be characterized by
the characteristic equation

(s + D¢ = 0. (5.29)

The switching line was chosen such that the characteristic equa-
tion of the C matrix could be written as

(s +1)° = 0, (5.30)
thus the switching line was given by

= 0. 5,31
e, + Se2 + 1Oe3 + 10e4 + Se5 + e 0 ( )

A typical step response is shown in Figure 5.5. The quantity

¢1 - ¢2 represents a measure of the bending mode vibrations.
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Error convergence was examined, and a typical system response for
initial conditions such that the error was initially outside the error
bound, and a typical trajectory is shown in Figure 5.5. The error re-
sponse along the line y = 0 should agree with that predicted by

equation 3.18,

0 1 0 0 0]
0 0 1 0 0
0o 0 0 1 0
&' = e' (3.18)
0o 0 0 0 1
-1 -5 -10 -10  -5]

or

(s + 1)5e1 = 0. (5.32)

It is noted in Figure 5.6 that the response of e for the period when

vy = 0 is consistent with equation 5.32.
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CHAPTER VI

AREAS FOR FUTURE INVESTIGATION

Many of the problems encountered in this thesis indicate a need
for future research. The fact that the reachable sets of systems with
complex input functions cannot be realistically evaluated by existing
techniques surely indicates a need for future research in this area.

The necessity of the transformation to canonic form precluded
the treatment of the parameter variation problem, since the transfor-
mation is a function of the system parameters. The possibility of
handling the equations in the non-canonic form could possibly allow
the treatment of the parameter variation problem.

No analytical expression could be derived for the controllable
zone of the system, and at present this region can only be found by
experimental techniques. The development of a technique by which some
indication of the controllable zone could be determined would repre-
sent a significant contribution to the usefulness of the technique
in practical systems.

It was pointed out that for a given system design, there exists
a permissable set of inputs to the model. The method of determining
this set of inputs for a given system has not been studied in any de-
tail. The possibility of designing a model whose permissable set of
inputs encompassed all possible inputs provides incentive in this
area.

The use of the semi-definite Liapunov function which was zero

on the switching line raises the possibility of defining more comp lex

58
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Liapunov functions which are zero on non-linear switching lines. The
advantages of a non-linear switching line would be a.larger controllable
zone. The first step in this area would be a treatment of the piece-
wise linear switching 1line.

The treatment of the regulator problem of Chapter IV indicates
the possibility of designing a system without the use of a model.
Obviously, fﬁere would be a limited set of inputs which could be
applied to the system but this is the case in a system with a model.

One final area of future investigation, could be the generaliza-
tion of the example of Chapter V to the flexible beam problem, and
the construction of an actual mechanical model. The model would be
quite useful in evaluating the results of investigations suggested

in this Chapter.
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